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It was found that C-reactive protein (CRP) could significantly increase the expression and activity of
tissue factor (TF), but decrease that of tissue factor pathway inhibitor (TFPI) in human umbilical vein
endothelial cells (HUVECs) in dose- and time-dependent manners, which could be antagonized by
PDTC and U0126. CRP could also increase protein expression of phosphorylated nuclear factor-kap-
paB (NF-kB), IkB-a and ERK1/2 in dose- and time-dependent manner. In addition, neutralizing anti-
body to CD32 (FcgammaR II) could significantly attenuate the expression and activity of TF and TFPI

induced by CRP. These results suggest that CRP may promote coagulation by enhancing the expres-
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sion and activity of TF and reducing that of TFPI by activating NF-kB and extracellular signal-regu-
lated kinase via FcgammaR II.
© 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

Increasing evidence supports the involvement of inflammation
in the pathogenesis of atherosclerotic diseases [1-3]. C-reactive
protein (CRP), the prototypic marker of inflammation, in addition
to being a risk marker, can also act as the important predictive fac-
tor for cardiac events [4-6]. In addition, it was demonstrated that
injecting highly purified CRP into humans could activate the blood
coagulation system [7,8]. Hence, CRP may trigger clinical cardiac
ischemic events by promoting thrombosis. Recently, increasing
evidence suggested that CRP might be also an active participant
in atherosclerosis [9-11].

Tissue factor (TF), a critical initiator of blood clotting, is present
in atherosclerotic plaque and triggers thrombosis after plaque rup-
ture [12,13]. Several studies demonstrated that TF played a pivotal
role in the pathophysiology of acute coronary syndrome (ACS) by
inducing the intracoronary thrombosis following endothelial in-
jury [14-16]. Under physiological state, TF is hardly expressed in
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vascular endothelium, but when endothelial injury occurs, includ-
ing endothelial dysfunction, it is sharply expressed and released
into blood stream.

The integrality of vascular endothelial structure and its func-
tion are closely associated with atherogenesis, atherosclerotic
development, and the final cardiac events. Over the past years,
evidence has accumulated from basic to clinical studies for a close
association of the degree of endothelial dysfunction and clinical
cardiovascular events in patients with cardiovascular risk factors,
coronary artery disease, ACS, or even heart failure. Vascular endo-
thelium is not only the first barrier against macrophage infiltra-
tion, foam cells and atherosclerosis formation, but also the
important tissue, which synthesizes and secrets coagulation and
anti-coagulation factors to modulate coagulation function. How-
ever, in endothelial cells, it is unclear whether CRP can affect TF
and tissue factor pathway inhibitor (TFPI) expression and activity,
and how to regulate it. Therefore, the present study aimed to re-
veal it.

2. Materials and methods
2.1. Cell culture
Human umbilical veins endothelial cells (HUVECs) were ob-

tained from American Type Culture Collection (ATCC, USA) and
grown at 37°C in 5% C02/95% O, using RPMI 1640 medium
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containing 10% fetal bovine serum (FBS), 100 U/ml penicillin and
100 pg/ml streptomycin. Before each experiment, HUVECs were
placed in medium with 1% FBS for 24 h.

2.2. Reagents

The recombined human CRP (rhCRP, Calbiochem) used in the
protocols was initially dialyzed for 24 h against Dulbecco’s PBS
using a dialysis slide (Pierce) with a cutoff of 10 kDa to remove so-
dium azide, which is present as a preservative in commercial prep-
arations of CRP and demonstrated to have vasorelaxation effect in
some studies [17,18]. Endotoxin, which can affect endothelial func-
tion [19], was also removed from the commercial thCRP by using
Detoxi-Gel Columns (Pierce) and was found to be <0.05 EU/ml by
the Limulus assay (Cambrex).

RPMI 1640 medium, FBS, peniciline and streptomycin were all
obtained from Hyclone. PDTC, the specific inhibitor of NF-kB,
U0126 [Inhibitor of ERK1/2 mitogen-activated protein (MAPK)],
SB203580 (Inhibitor of p38 MAPK), and SP600125 (Inhibitor of
JNK MAPK) were all obtained from Calbiochem. Antibodies of
IxB-o. phosphorylated at Ser32 (P-IkB-ot), phosphorylated NF-kB-
p65 (P-NF-kB-p65), phosphorylated ERK1/2 (P-ERK1/2), total-
ERK1/2 (T-ERK1/2) and secondary antibody conjugated with horse-
radish peroxidase (HRP) were all purchased from Cell Signaling
Technology (CST). Anti-CD16 (FcgammaR III), anti-CD32 (Fcgam-
maR II), anti-CD64 (FcgammaR 1) antibodies were purchased from
Santa Cruz Biotechnology Inc.

2.3. Quantification of TF and TFPI antigen expression

HUVECs were pretreated with or without inhibitor of NF-xB
(100 pmol/l PDTC), as well as MAPK inhibitors (25 pmol/l U0126,
SB203580, SP600125) for 3 h, and then cultured with medium in
the absence of 0-100 pg/ml purified rhCRP for 6 h or 50 pg/ml
purified rhCRP for different time from O to 24 h. The detailed flow-
sheet was shown in Fig. 1. The cells were repeated freeze-thaw for
three cycles and the TF extracted with a buffer saline, and then
centrifuge the lysed cells to remove the cell debris. The cell lysates
were prepared for the measurement of TF antigen expression
according to the recommendation of kit. The ELISA kits for mea-
surement of TF and TFPI antigen were purchased from ADI (Amer-
ican Diagnostic Inc.).

2.4. Determination of TF and TFPI activity
HUVECs were treated with the same methods mentioned above,

and then TF and TFPI activities were determinated by chromogenic
substrate with kit (ADI) according to the recommendation.
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Fig. 1. Experimental flowsheet.

2.5. Measurement of mRNA expression of TF and TFPI

After the treatment for HUVECs, total RNA was isolated from the
cells using Trizol according to the manufacturer’s instructions
(Invitrogen, USA). Reverse transcription (RT) of the RNA was per-
formed using the ImProm-IITM Reverse Transcription System (Pro-
mega, USA). Real-time PCR was performed to determine the mRNA
expression of TF and TFPI with Rotor-gene PCR System. SYBR Green
PCR Master Mix was obtained from Promega (USA). Housekeeping
human B-actin mRNA was also simultaneously amplified as inter-
nal control. The primers used were as follows: TF, 5-CCT TAC
CTG GAG ACA AAC CTC G-3' (sense) and 5'-CCG TTC ATC TTC TAC
GGT CAC A-3' (antisense); TFPI, 5'-GAC TCC GCA ATC AAC CAA
GGT-3' (sense) and 5'-CTG TCT GCT GGA GTG AGA CAC C-3’ (anti-
sense); B-actin: 5'-AGC CTC GCC TTT GCC GA-3' (sense) and 5'-CTG
GTG CCT GGG GCG-3' (antisense).

2.6. Western blot analysis for protein expression of signaling pathway

To elucidate the mechanisms by which CRP excerts its effects on
HUVECs, we tested the protein expression of NF-xB pathway (P-
IkB-a,, P-NF-xB-p65) and ERK1/2 MAPK pathway (P-ERK1/2, T-
ERK1/2).

Total protein was extracted from cells and protein concentration
was measured with Protein Extraction kit and BCA Protein Assay Kit
respectively (Beyotime Institute of Biotechnology, Beijing, China).
Subsequently, p-mercaptoethanol was added to a final concentra-
tion of 1%, after which each sample was denatured by boiling for
5 min, followed by heating and then subjected to 10% sodium dode-
cyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) gel.
And transferred onto polyvinylidene difluoride (PVDF) membrane
(Millipore), after blocking with 3% dry milk/0.1% Tween 20, incu-
bated with primary antibodies in the same solution, then incubation
with HRP-conjugated secondary antibodies (1:1000), proteins were
visualized by ECL plus system (Beyotime Biotechnology, China),
according to the instructions provided by the manufacturer. Immu-
noblotting signals were quantitated using an ImageMaster DVS.

2.7. Electrophoretic mobility shift assay (EMSA) for NF-kB binding
activity

HUVECs were treated with the same methods mentioned above,
and then nuclear protein were extracted with Nuclear Protein
Extraction kit and quantified with kit mentioned above (Beyotime
Institute of Biotechnology, Beijing, China) according to the
recommendation.

Nuclear extracts were prepared as described above. Nuclear
protein/DNA-binding reactions were performed in a volume of
20 ml containing 5 mg of nuclear extract protein, 10 mM HEPES-
KOH (pH 7.9), 100 mM NacCl, 1 mM EDTA, 1 mM DTT, 10% glycerol,
and 2 mg poly (dI-dC) as a non-specific competitor. The probes for
NF-kB was end labeled with [y->?P]ATP (DuPont, USA) by T4 poly-
nucleotide kinase. Binding reactions were started by the addition
of a [y->2P]ATP-labeled DNA probe followed by incubation at room
temperature for 0 min. The oligo probe 5-GCAGAGGGGACTTTCC-
GAGA-3' containing the NF-kB binding motif was annealed to the
complementary oligonucleotide and end labeled by using T4 poly-
nucleotide kinase. Samples were electrophoresed on a native 6%
polyacrylamide gel at 200V in 0.5 TBE buffer. The gels were then
dried and the bands visualized by exposure to film.

2.8. Involvement of receptor type in TF and TFPI expression and
activity induced by CRP

To determine the role of Fcgamma receptors (FcgammaRs) in
regulating TF and TFPI expression induced by CRP, the block of
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FcgammaRs by pretreatment with specific blocking antibodies to
CD16, CD32, CD64 (10 pg/ml) for 1 h prior to 6-h CRP treatment,
and the expression and activity of TF as well as TFPI were mea-
sured by the above methods.

2.9. Statistics

All data were expressed as means + S.D. Numeric values were
analyzed for the presence of normal distribution. Comparisons
among groups were performed by one-way ANOVA analysis. A va-
lue of P < 0.05 was considered statistically significant.

3. Results
3.1. Effects of CRP on the levels of TF and TFPI antigen in HUVECs

HUVECs were cultured with medium in the presence of 0 pg/ml
to 100 pg/ml (0, 5, 20, 50, and 100 pg/ml) rhCRP for 6 h or in the
presence of 50 pg/ml rhCRP for 0-24 h (0, 2, 6, 12, and 24 h). Data
in Fig. 2 showed that basic TF antigen expression was very low, and
CRP could significantly increase the expression of TF antigen and
decrease the expression of TFPI antigen in dose-dependent
(Fig. 2A and B) and time-dependent (Fig. 2C and D) manners.

3.2. Effects of CRP on the mRNA expression of TF and TFPI in HUVECs

HUVECs were cultured and treated with the same methods
mentioned above. As shown in Fig. 3, the basic mRNA expression
of TF was also very low, and CRP could remarkably increase the
expression of TF mRNA and decrease the expression of TFPI mRNA
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in dose-dependent (Fig. 3A and B) and time-dependent (Fig. 3C and
D) manners.

3.3. Effects of CRP on the activities of TF and TFPI in HUVECs

After the same treatment for HUVECs mentioned above, the
activities of TF and TFPI were measured according to the recom-
mendation of kits. Results showed that the activity of TF before
CRP stimulation was much lower, and CRP treatment could signif-
icantly increase the activity of TF and decrease the activity of TFPI
in dose-dependent (Fig. 4A and B) and time-dependent (Fig. 4C and
D) manners.

3.4. Effects of CRP on the protein expression of NF-xB and ERK1/2
MAPK pathway in HUVECs

After treatment for HUVECs, protein of cells was extracted, and
Western blot was used to evaluate the protein expression of NF-kB
and ERK1/2 MAPK pathway (P-NF-«B-p65, P-IxB-o, P-ERK1/2, and
T-ERK1/2). As shown in Fig. 5, CRP could significantly increase the
protein expression of P-NF-kB-p65 as well as P-IkB-a, in a dose-
dependent manner (Fig. 5A and B), and remarkably increase the
protein expression of P-ERK1/2 in a dose-dependent manner with-
out significant influence on the protein of T-ERK1/2 (Fig. 5C).

3.5. Effects of CRP on the DNA binding activity of NF-xB in HUVECs

NF-xB transcription factor is the key expression regulator of
many genes in all kinds of cells. Therefore, except for evaluation
of protein expression of P-NF-kB-p65 and P-IkB-a, we also focused
on the DNA binding activity of NF-xB with EMSA. Results in Fig. 6
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Fig. 2. Effects of CRP on the levels of TF and TFPI antigen in HUVECs. (A and B) Dose-dependent effect of CRP on the levels of TF and TFPI antigen. (C and D) Time-dependent

effect of CRP on the levels of TF and TFPI antigen. P < 0.01 vs. basic value.
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Fig. 3. Effects of CRP on the mRNA expression of TF and TFPL (A and B) Dose-dependent effect of CRP on mRNA expression of TF and TFPL. (C and D) Time-dependent effect of

CRP on mRNA expression of TF and TFPI. P <0.01 vs. basic value.

showed that CRP could significantly increase the DNA binding
activity of NF-xB in dose-dependent (Fig. 6A) and time-dependent
(Fig. 6B) manners.

3.6. Effects of NF-kB and MAPK pathway inhibitors on the expression
and activity of TF as well as TFPI induced by CRP in HUVECs

As the important regulation pathways of signal transduction, NF-
KB and MAPK pathways play pivotal role in regulating the expres-
sion of many genes. To evaluate the mechanism of CRP-induced
changes of TF and TFPI expression and activity, NF-xB and MAPK
pathway inhibitors (PDTC, U0126, SB203580, SP600125) were used
to pretreat HUVECs for 3 h before 6-h treatment with 50 pig/ml CRP.

From the results in Fig. 7, it could be observed that PDTC and
U0126 could significantly counter-regulate the effects of CRP on
the expression as well as activity of TF and TFPI (P<0.01), but
SB203580 and SP600125 could not cause significant changes in
the expression and activity of TF and TFPI (P > 0.05).

3.7. Effect of antibodies to Fcgamma receptors on CRP-induced TF/TFPI
expression and activity

As shown in Fig. 8, after coincubation with neutralizing anti-
bodies of CD16 (FcgammaR I), CD32 (FcgammaR II) and CD-64
(FcgammaR III), expression and activity of TF and TFPI induced
by CRP were significantly attenuated by antibody to CD-32
(P<0.01), but not by the antibodies to CD16 and CD-64 (P > 0.05).

4. Discussion

It is well accepted that inflammation plays an important role in
atherogenesis, atherosclerotic development, and even cardiac

events such as ACS [20-22]. CRP, as the inflammatory marker,
was the important predictor of cardiovascular events and progno-
sis [4-6]. However, it is unclear and controversial about whether
CRP directly participates in endothelial dysfunction and
atherogenesis.

Normally, the levels of TF and TFPI are well balanced to prevent
thrombosis or hemorrhage, but when vascular endothelium is
stimulated by some factors, TF will be greatly increased and the
balance between TF and TFPI will be broken to promote coagula-
tion. Therefore, the balance between TF and TFPI also plays pivotal
role in coronary events [14-16,23-25].

In the present study, purified rhCRP free of sodium azide and
endotoxin, which can contaminate commercial CRP and induce
artifact [26-28], was used to evaluate the effects of CRP on the
expression and activity of TF and TFPI. Results demonstrated that
CRP could induce the increase of TF activity and TF antigen as well
as mRNA expression, and CRP could also cause the decrease of TFPI
in the above parameters. In addition, CRP could enhance the DNA
binding activity of NF-xB and promote the protein expression of
phosphorylated NF-kB-p65 and I-kB-a. To evaluate which path-
way participates in the effects of CRP on TF and TFPI expression
and activity, NF-xB and MAPK pathway inhibitors were used to
pretreat HUVECs before treatment with CRP. It was demonstrated
that PDTC and U0126 could both significantly reduce the expres-
sion and activity of TF and TFPI induced by CRP in HUVECs, but
SB203580 and SP600125 had no significant effects on the expres-
sion and activity, in addition, CRP could greatly increase the pro-
tein expression of P-ERK1/2 MAPK without significant influence
on T-ERK1/2 MAPK.

However, many studies revealed that CRP could modulate gene
expression via other pathways or via other receptors. For example,
a study from Kuhlmann et al. found that CRP could cause a disrup-
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activities of TF and TFPI. P <0.01 vs. basic value.
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Fig. 5. Effects of CRP on the protein expression of P-NF-kB-p65 and P-IkB-o. (A) Dose-dependent effect of CRP on the protein expression of P-NF-kB-p65. (B) Dose-dependent
effect of CRP on the protein expression of P-IkB-a. (C) Dose-dependent effect of CRP on the protein expression of P- and T-ERK1/2. P < 0.05 and P < 0.01 vs. basic value.

tion of the blood-brain barrier via activation of surface Fcgamma
receptors CD16/32 followed by p38-MAPK-dependent reactive

oxygen species formation by the NAD(P)H-oxidase [29], which
was demonstrated in bovine brain microvascular endothelial cells
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(BBMVEC) and EVC304. Montero et al. demonstrated that CRP
could augment matrix metalloproteinase-1 (MMP-1) mRNA
expression in HUVECs and aortic endothelial cells (HAECs) via
p38 or ERK1/2 MAPK pathway, whereas regulate MMP-10 expres-
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sion via p38 and JNK pathways [30]. In addition, Wang et al. dem-
onstrated that CRP could significantly upregulate the expression of
IL-18 via ERK MAPK pathway but not the other pathways in HU-
VECs [31], and Wu et al. demonstrated that CRP could increase
TF and decrease TFPI expression by activating ERK1/2 but not
p38 or JNK MAPK pathway in VSMCs [32]. Consequently, regula-
tion of gene expression by CRP is complex and expression of differ-
ent gene in the same cell model or same gene in different cell
models may be regulated via different pathways. The results in
our study suggest that CRP may promote coagulation by affecting
TF and TFPI expression and activity via FcgammaR II and NF-xB
as well as ERK1/2 pathway in HUVECs, and it may be independent
of JNK and p38 MAPK pathways. The effects of CRP on endothelial
function and atherosclerosis including the mechanisms are far
from clear, and more studies, especially mechanism studies, are
needed to further clarify. In one word, these findings provide
new insights into the molecular mechanisms, and effects of CRP
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Fig. 7. Effects of NF-xB and MAPK pathway inhibitors on the expression and activity of TF as well as TFPI induced by CRP. (A and B) Effects of inhibitors on the levels of TF and
TFPI antigen. (C and D) Effects of inhibitors on the expression of TF and TFPI mRNA. (E and F) Effects of inhibitors on the activity of TF and TFPI. *P > 0.05 and P < 0.01 vs. CRP

group without pretreatment of inhibitors.



Y. Chen et al./FEBS Letters 583 (2009) 2811-2818 2817

A 3500

3000 |
Z 2500}
&
= 2000 |
=
&
£ 1500
=
Z 1000}
500 |
*
o L _oemem
CTL Ann CDI16 Antl CD32 Anti-CD64
c ¥
5}
E, 20t
2
z T
T
=
=10
5 L
*
0 |
CTL Ann-CDls Ann-cmz Anti-CD64
E 12
1r A A
s o0s
&
2
0.6
04
02t *
il N N B
CTL CRP  Anti-CD16 Anti-CD32 Anti-CD64

W

TFPI antigen (ng/ml)

O

TFPI activity (100U/L)

-

TFPI mRNA/CRP

1l

CRP  Anti-CD16 Anti-CD32 Anti-CD64

li

CTL Anti-CD16  Anti-CD32  Anti-CD64

li

CTL Anti-CD16  Anti-CD32 Anti-CD64

18
16
14
12

08
0.6
04
02 |

Fig. 8. Effect of antibodies to Fcgamma receptors on CRP-induced TF/TFPI expression and activity. (A and B) Effect of antibodies to Fcgamma receptors on the expression of TF
and TFPI antigen. (C and D) Effect of antibodies to Fcgamma receptors on the activity of TF and TFPI. (E and F) Effect of antibodies to Fcgamma receptors on the expression of

TF and TFPI mRNA. CTL = Control group. *P > 0.05 and P <0.01 vs. CRP group.

on the balance between TF and TFPI, and these effects may partly
explain the pivotal role of CRP in increasing thrombotic events in
patients with atherosclerotic diseases.
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