Trichlorfon-induced apoptosis in hepatocyte primary cultures of Carassius auratus gibelio

Wei-Na Xu, Wen-Bin Liu, Zhao-Pu Liu

Abstract

Trichlorfon, an organophosphorus pesticide, can disrupt metabolism, reproduction and immune functions of some aquatic animals. In the present study, the effect of trichlorfon on apoptosis and the underlying apoptotic mechanism were investigated in primary cultures of Carassius auratus gibelio hepatocytes. Analyses of cultures exposed to 0, 0.01, 0.1, and 1.0 mg L\(^{-1}\) trichlorfon concentrations for 24 h indicated that trichlorfon induced apoptosis and caused nuclear shrinkage, cell membrane rupture, cytoskeletal collapse, loss of cytoplasm, mitochondria vacuolization, and apoptotic body formation, as well as lipid droplet accumulation. Trichlorfon increased intracellular reactive oxygen species and malondialdehyde concentrations and caused cytochrome c release from mitochondria into the cytoplasm, leading to caspase-3 activation. These findings contributed to a better understanding of the mechanisms underlying trichlorfon-induced apoptosis via activation of mitochondrial pathways while clearly indicating that trichlorfon-induced cell death was via apoptosis accompanied by mitochondrial cytochrome c release and consequent caspase-3 activation.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Trichlorfon [O,O-dimethyl-(2,2,2-trichloro-1-hydroxyethyl)-phosphonate], an organophosphorus pesticide (OP), is currently used in aquaculture to control ectoparasites owing to its relatively low bioaccumulation and short-term persistence (Lopes et al., 2006). Trichlorfon dosage to eradicate ectoparasites varies from 0.1 to 1 mg L\(^{-1}\) in ponds (Chang et al., 2006), but excessive amounts are often applied in fishery and agricultural farm management, resulting in trichlorfon-polluted waters. The pesticide's residues in the water has raised concerns over trichlorfon's potential to cause health effects in non-targeted species such as fish, crabs, and shrimp (Hong et al., 2003; Soumis et al., 2003; Guimaraes et al., 2006). Trichlorfon exerts its toxic effects in animals mainly by the inhibition of acetylcholinesterase at skeletal muscle synapatic and neuromuscular junctions, and is also capable of altering an organism's antioxidant defense system, inducing oxidative stress both in vitro (Feng et al., 2007; Hong et al., 2007) and in vivo (Chang et al., 2006).

Oxidative stress seems to be the central element in the regulation of the apoptotic pathway triggered by environmental stressors (Barzilai and Yamamoto, 2004; Shi et al., 2004; Ott et al., 2007). Yu et al. (2008) demonstrated OP insecticide chlorpyrifos-induced cell apoptosis in mouse retina via oxidative stress. Apoptosis may be induced either by the extrinsic pathway involving cell surface death receptors or by the intrinsic pathway induced by intracellular stimuli that transmit a signal to mitochondria (Rea-Boutrois et al., 2008). Oxidative stress-induced apoptosis has been largely associated with activation of apoptotic intrinsic pathways at the mitochondrial level (Francoa et al., 2009). It has been reported that OPs, e.g., paraoxon (POX), dichlorvos, and chlorpyrifos, induced cell apoptosis via activation of mitochondrial pathways, including caspase-3 activation and the release of cytochrome c into the cytosol (Saleh et al., 2003; Li et al., 2007; Saulsbury et al., 2008, 2009). Despite previous investigations into OP insecticide-induced apoptosis, the biological action and molecular mechanism of trichlorfon-induced apoptosis are still not clear.

The aim of this study is to broaden the understanding of the mechanisms of trichlorfon-induced apoptosis in vitro by investigation of trichlorfon cytotoxicity in primary hepatocyte cultures of Carassius auratus gibelio. The effects of different trichlorfon concentrations are assessed in terms of changes in reactive oxygen species (ROS) and malondialdehyde (MDA) concentrations, cell viability, apoptotic ratios, release of cytochrome c, and caspase-3 activity. Additionally, hepatocyte ultrastructural changes are observed by transmission electron microscope (TEM). The liver, an important site for biotransformation and bioaccumulation of xenobiotic
substances (Filipak-Neto et al., 2007), is intensively studied as a target organ for toxicology and risk assessment. Cultured primary hepatocytes of C. auratus gibelio provide rapid, easy, and sensitive approaches to ecotoxicological studies of freshwater fish, e.g., investigations of enzyme variability and cytotoxic metabolism, which may help in gaining valuable information for drug utilization in aquaculture.

2. Materials and methods

2.1. Materials

Trichlorfon (99.9% purity) was purchased from Sigma Chemical Co. (St. Louis, MO, USA). Dulbeco modified Eagle medium (DMEM); F-12 medium, fetal bovine serum, phosphate buffered saline without Ca2+ and Mg2+ (PBS), 0.25% trypsin–ethylene diamine tetraacetic acid (trypsin–EDTA), antibiotics (10 000 IU mL−1 penicillin G sodium, 10 000 IU mL−1 streptomycin), and trypan-blue were obtained from GIBCO BRL (Grand Island, New York, USA). Polystyrene Corning 25 mL cell culture flasks, 6-well plates, and 96-well plates were purchased from Corning, Inc. (Corning, New York, USA).

2.2. Hepatocyte primary culture

Hepatocytes culture was carried out as previously described (Arat et al., 2002). Briefly, fish were sacrificed and disinfected with 75% alcohol, liver samples rapidly isolated from the body and washed several times in ice-cold PBS containing antibiotic (100 IU mL−1 penicillin G sodium and 100 IU mL−1 streptomycin). After removal of PBS by sterile pipette, the samples were cut into small pieces (~1 mm) with a scalpel, placed into culture flasks and routinely cultured in fresh DMEM/F12 medium in the presence of 15% serum and 100 IU mL−1 of antibiotic (as above) at 25°C in an incubator with 5% CO2, with the medium replaced every 3 d. After 1 week, cells were observed growing out of the explants and the explants removed. Upon reaching confluency, cells were harvested by trypsinization (0.25% trypsin–EDTA), suspended at a concentration of 1×107 cells mL−1, and counted using trypan-blue (0.4%, Wang et al., 2008) with inverted microscope (TE 2000 Microscope, Nikon, Japan) to confirm that cell viability exceeded 90% for subsequent experimentation.

2.3. Cell treatment

Cultured cell suspensions were seeded onto 6-well plates, incubated at 25°C, and medium replaced every 3 d until 80–90% confluent, at which time they were cultured in medium containing a range of trichlorfon concentrations (0, 0.01, 0.1, and 1.0 mg L−1) for 24 h at 25°C. The trichlorfon half-life time in water was 2.5 d and the 95% dissipation time of the chemical was 10.2 d (Lopes et al., 2006). After exposure, cells were harvested by trypsinization (0.25% trypsin–EDTA) at room temperature and suspended at a density of 1×107 cells mL−1 for cellular biochemical and apoptotic assays.

2.4. Cell proliferation assay

Hepatocyte proliferation was assayed using a Cell Counting Kit-8 (CCK-8, Dojindo Laboratories, Kumamoto, Japan) following the manufacturer’s protocol. This assay is an enzymatic test based on the determination of mitochondrial dehydrogenase enzyme activities (Yoshimura et al., 2002). Briefly, 100 μL of primary cell culture suspension (5–10×104 cells mL−1) was added to each well of a 96-well plate, incubated in 5% CO2 at 25°C for 48 h, and then treated with trichlorfon at 0, 0.01, 0.1, 1 mg L−1 for 24 h. 10 μL of CCK-8 solution was then added to each well, incubated for a further 4 h, and the OD value read at 450 nm with an enzyme-like immunosorbent assay (ELISA) reader (Multiskan Spectrum, Thermo Scientific, USA).

2.5. Intracellular ROS assay

Accumulation of intracellular ROS was assayed by the fluorescence emission of 2′,7′-dichlorofluorescin diacetate (DCF-DA, Hempel et al., 1999). Briefly, 500 μL of trichlorfon-treated hepatocytes suspension (1×107 cells mL−1) were incubated in PBS buffer with 10 μmol L−1 DCF-DA in the dark for 1 h at 25°C and the fluorescence intensity determined using a fluorescence microplate reader (Infinite M200, TECAN, Switzerland) with excitation at 488 nm and emission at 525 nm (Roos et al., 2009).

2.6. Intracellular MDA concentration measurement

After trichlorfon exposure, hepatocytes suspensions (1×107 cells mL−1) were disrupted with a glass tissue grinder, centrifuged at 800g at 4°C for 10 min, and the supernatant collected. The MDA concentration was determined by the method of Ohkawa et al. (1979) with a MDA Detection kit from Nanjing Jian Cheng Biology Company (Nanjing, China) and expressed as nmol mg protein−1. Total cellular proteins were quantified by the classical Bradford method with Coomassie Brilliant Blue G-250 (Bradford, 1976).

2.7. Apoptosis detection

2.7.1. Annexin V-FITC/PI assay

Apoptotic and necrotic were quantified by measuring externalized phosphatidylserine (PS) assessed by Annexin V-FITC (Dong et al., 2005) and by propidium iodide (PI) uptake (Li et al., 1999) using an Annexin V-FITC/PI Apoptosis Detection Kit (Nanjing Keygen Biotech. Co., Ltd.). Briefly, after trichlorfon exposure, 250 μL of cell suspension (1×107 cells mL−1) were stained by mixing with 2 μL each of Annexin V-FITC and PI and incubation at room temperature in the dark for 15 min and then the apoptotic cells populations analyzed immediately using a FACScan flow cytometer (Becton Dickinson, San Jose, CA) with excitation at 488 nm and emission at 530 nm (FITC) and 610 nm (PI).

2.7.2. Nuclear morphological analysis

Nuclear morphology analysis was performed using the fluorescence probes acridine orange (AO) and ethidium bromide (EB) (Kasibhatla et al., 1998) and a cell apoptosis AO/EB detection kit (Nanjing Keygen Biotech. Co., Ltd.). After trichlorfon exposure, cultured medium was removed, cells washed twice with PBS, stained with both AO and EB for 5 min in the dark, and washed twice with warm PBS. Cell nuclear morphology was observed under a camera-equipped fluorescence light microscope (Eclipse 90i Microscope, Nikon, Japan) with an excitation wave length of 495 nm and emission at 515 nm (AO) and 600 nm (EB).

2.7.3. Hepatocyte ultrastructure observation

Changes in hepatocyte ultrastructure were confirmed by examination of cell organelles by TEM using a method of Carlson et al. (2000). Briefly, after exposure, cell suspensions (1×107 cells mL−1) were centrifuged, the medium discarded, the cells fixed with 0.25% glutaraldehyde in PBS (pH 7.2) at 25°C for 4 h, washed in cacodylate buffer, post-fixed with 1% OsO4, dehydrated in a graded series of ethanol, and, after getting to pure ethanol, the samples were dried by critical point and coated with gold. Ultrathin sections of the resulting sample were counterstained with 4% uranyl acetate, as well as lead citrate, and observed.
for 10 min. About 50

3.1. Trichlorfon effects on oxidative stress in hepatocytes

3. Results

3.1. Trichlorfon effects on oxidative stress in hepatocytes

After exposure to 0.01, 0.1, and 1 mg L\(^{-1}\) trichlorfon, cultured hepatocyte ROS concentrations were significantly \((p < 0.05)\) increased compared to untreated control cells (Fig. 1A) and ROS concentrations in the 1 mg L\(^{-1}\) trichlorfon treatment were significantly \((p < 0.05)\) than at 0.01 and 0.1 mg L\(^{-1}\). The intracellular MDA concentration was also examined to determine if increased production of ROS may have played a role in trichlorfon-induced oxidative toxicity and similar results were obtained after treatments with trichlorfon for 24 h. These results suggested that the trichlorfon-induced generation of ROS played a significant role in trichlorfon-induced MDA in these hepatocytes (Fig. 1B).

Fig. 1. Trichlorfon effects on C. auratus gibelio hepatocyte ROS and MDA concentrations. Hepatocytes incubated with 0, 0.01, 0.1, and 1 mg L\(^{-1}\) trichlorfon for 24 h: (A) trichlorfon effects on intercellular ROS concentrations; (B) trichlorfon effects on intercellular MDA concentrations; results mean ± SEM of six experiments; bars, different letters denote results significantly different from control \((p < 0.05)\), same letters denote results not different \((p > 0.05)\).

3.2. Trichlorfon effects on hepatocyte viability, apoptosis, and necrosis

Increasing concentrations of trichlorfon resulted in a dose-dependent decrease in cell viability as measured by the CCK-8 cell proliferation assay (Fig. 2). Generally, as the trichlorfon concentration increased, cell viability decreased \((p < 0.05)\); hepatocyte viability treated with 0.01, 0.1, and 1 mg L\(^{-1}\) trichlorfon were 79.21%, 61.66%, and 52.75% of the control value, respectively, and significantly decreased \((p < 0.05)\) compared to control cells. Interestingly, there was no significant difference in viability between 0.1 and 1 mg L\(^{-1}\) trichlorfon at 24 h \((p > 0.05)\).

The result of flow cytometry analysis revealed that trichlorfon-induced apoptosis in hepatocytes in a dose-dependent manner with the proportion of apoptotic cells significantly increased \((p < 0.05)\) in 0.01, 0.1, and 1 mg L\(^{-1}\) trichlorfon groups compared with the control (Fig. 3A). Here, also, there was no significant difference between cells treated with 0.1 and 1 mg L\(^{-1}\) trichlorfon at 24 h \((p > 0.05)\). The proportion of necrotic cells in the presence of trichlorfon was similar to the control cells (Fig. 3).

3.3. Trichlorfon effects on hepatocyte nuclear morphology and ultrastructure

AO/EB double-staining revealed significant changes in the nuclear morphology of trichlorfon-treated cells compared to the controls. Cells in control fluoresced brightly, and were proportional...
and well distributed and cells were integrity and uniformity (Fig. 4A). In contrast, at 0.01 mg L$^{-1}$ trichlorfon exposure, the cell growth condition is not good. Some cells were piled up in together, presented irregular shape. Most nuclei were stained orange and some retained a regular shape while others were irregularly shaped with signs of pycnosis (Fig. 4B). At 0.1 mg L$^{-1}$ trichlorfon, cell membranes were ruptured, and there was cytoskeletal col-lapse, nucleus shrinkage, and orange luminescent apoptotic body formation (Fig. 4C). At 1.0 mg L$^{-1}$ trichlorfon, there was no cell integrity and orange fluorescing particles were observed (Fig. 4D).

Examination of the hepatocytes by TEM showed that normal hepatocytes were polyhedral, with a spherical nucleus. In a typical cell, the nuclei, round and big, was found in the center of the cell and the cytomembranes intact. Rough endoplasmic reticulum (RER) and mitochondria were abundant in the cytoplasm and the RER was continuous with the external nuclear membrane and concentrated in the perinuclear region (Fig. 5A). On exposure to 0.01 mg L$^{-1}$ trichlorfon, large numbers of lipid droplets were present, mitochondria vacuolated, cristae lost, and broken mitochondrial membranes observed (Fig. 5B). With 0.1 mg L$^{-1}$ trichlorfon treatment, broken mitochondrial membranes, vacuolization of mito-chondria, loss of cytoplasm, and pycnotic nuclei were observed (Fig. 5C). At 1 mg L$^{-1}$, organelles were covered with highly polymorphic lipid droplets and loss of cytoplasm was observed (Fig. 5D).

3.4. Trichlorfon effects on cytochrome c levels

Trichlorfon induced a dose-dependent increase in cytochrome c concentrations in the cytosol and decrease its concentrations in mitochondria (Fig. 6). Even at the lowest concentration, trichlorfon significantly ($p < 0.05$) induced cytochrome c release from mitochondria into cytoplasm.

3.5. Trichlorfon effects on caspase-3 activities

Caspase-3 plays a critical role in the mitochondrial apoptotic signaling pathway. The present results showed that exposure to 0.01, 0.1, and 1 mg L$^{-1}$ trichlorfon caused significant ($p < 0.05$) increases in caspase-3 activity compared to untreated control cells.
No significant differences were found between 0.01, 0.1, and 1 mg L\(^{-1}\) trichlorfon (\(p > 0.05\)).

4. Discussion

In the present study, primary \textit{C. auratus gibelio} hepatocytes cultures were employed to demonstrate trichlorfon cytotoxicity to...
hepatocytes. The proportions of viable cells obtained from CCK-8 analysis declined as trichlorfon concentration increased, while the proportion of necrotic cells showed negligible differences among all groups. The question remained as to how trichlorfon induced cell death.

It is well-known that apoptosis is an important and controlled form of cell death that occurs under a variety of physiological and pathological conditions (Aragane et al., 1998; Han et al., 2007). It has been shown that environmental stressors (metals, particulate matter, and pesticides) can induce apoptotic cell death (Ayd-Boussouma et al., 2008; Gong et al., 2009; Hanzel and Verstraeten, 2009; Kobayashia et al., 2009). Thus, possible trichlorfon-induced apoptosis was investigated here and the results demonstrated that trichlorfon led to increased ratio of apoptotic cells. However, the question arose as to which pathway trichlorfon induced hepatocyte apoptosis.

Apoptosis may be induced via the extrinsic pathway by the activation of death receptors or intrinsic pathway by intracellular stimuli that transmit a signal to the mitochondria. In both pathways, the result is activation of the executioner caspase-3, a cysteine protease that plays an essential role in apoptosis by mediating a subsequent lethal chain of events (Porter and Janicke, 1999; Brenner and Kroemer, 2000). Caspase-3 activation can be used as a marker of apoptosis (Han et al., 2007). In earlier studies, the OPs, chlorpyrifos and POX have been shown to induce apoptosis in immune and neural cells by activation of intracellular caspase-3 (Carlson et al., 2000; Saleh et al., 2003; Nakadai et al., 2006; Li et al., 2007). Activation of caspase-3 is associated with morphological and structural changes characteristic of apoptosis. In this study of hepatocytes, morphological examination showed that trichlorfon caused nuclear morphological and ultrastructure changes, including cell membrane rupture, cytoskeletal collapse, nuclear shrinkage, mitochondrial vacuolization, mitochondrial damage, and apoptotic body formation, which were all common apoptotic characteristics. Using AO/EB staining assay, live cells will appear uniformly green; Necrotic cells stain orange, but have a nuclear morphology resembling that of viable cells, with no condensed chromatin; Early apoptotic cells will stain green and contain bright green dots in the nuclei; Late apoptotic cells will stain orange and show condensed and often fragmented nuclei. Nuclear fragmentation using AO/EB staining is an apoptotic hallmark indicative of chromatin condensation and due to an imbalance between the activities of deoxyribonuclease (DNase) and those enzymes responsible for the maintenance of DNA integrity (Hanzel and Verstraeten, 2009). Activated caspase-3 cleaves inhibitor of caspase-activated DNase (ICAD) in a heterodimeric form consisting of caspase-activated DNase (CAD) and cleaved ICAD (Susz et al., 2000) and the latter dissociates from CAD, allowing formation of CAD oligomers with DNase activity which then cause internucleosomal DNA fragmentation (Pirnia et al., 2002). Here, the role of caspase-3 in trichlorfon-induced apoptosis was confirmed in this system.

Several signaling pathways have been implicated in the initiation of the caspase-3 cascade. One of the most well defined pathways for pro-caspase-3 activation is the translocation of the mitochondrial membrane potential, cytochrome c, from mitochondria to the cytosol (Bossy-Wetzel et al., 1998). The disruption of the mitochondrial membrane potential allows cytochrome c leakage into the cytoplasm (Chipuk et al., 2006; Garrido et al., 2006) where it participates in the activation of caspase-3 and subsequent activation of caspase-9 (Li et al., 1997). Here, we investigated a key event in the activation of caspase-3, the release of cytochrome c, and demonstrated that trichlorfon-induced apoptosis in primary hepatocytes was accompanied by the increased release of cytochrome c into the cytoplasm with increased trichlorfon concentrations. The mechanism of cytochrome c release from mitochondria is not well understood, but it has been suggested that it may be associated with an increase of cytoplasmic Ca$^{2+}$ (Hong et al., 2003; Bagetta et al., 2004; Yu et al., 2008). It may, however, be induced by ROS interactions with mitochondria (Zhang and Bhavnani, 2005).

In this study, trichlorfon induced hepato cellular oxidative stress by increasing the generation of ROS and MDA concentrations. Oxidative stress appears to be the central element in regulation of apoptotic pathways triggered by environmental stressors (Francoa et al., 2009). Transcription factor p53 is a sensor of cellular stress and a critical activator of the apoptotic intrinsic pathway. This factor may transactivate certain genes which contribute to apoptosis, and other genes which lead to ROS increases (Haupt et al., 2007). When intracellular ROS production exceeds the antioxidant defense capacity of the cell, increased ROS leads to lipid peroxidation and generalized oxidative damage to all mitochondrial components, e.g. oxidative mitochondrial DNA (mtDNA) damage, cellular oxidative stress ensues. It was generally accepted that oxidative stress and ROS cause DNA damage, and specific DNA lesions or damage are known to trigger apoptosis (Francoa et al., 2009). Cellular stress-induced apoptosis occurs by a mechanism that involves altering mitochondrial permeability, subsequent cytochrome c release from mitochondria, and formation of the apoptosome, a catalytic multiprotein platform that activates caspase-9 which then cleaves caspase-3, resulting in downstream events involved in cell death (Crow et al., 2004). Thus, from the present results, we deduced that there was a close correlation between the ROS changes and apoptosis observed here.

Interestingly, the lipid accumulation, observed in TEM of hepatocyte ultrastructure that occurred in the trichlorfon-treated groups may have been due to increased lipid peroxidation caused by ROS, which led to mitochondrial vacuolization, structural lesions, and concurrent mitochondrial dysfunction. Mitochondria are often associated with fatty acid-containing oil droplets from which they derive raw materials for oxidation (Karp, 2006), and lipid synthesis and metabolism occurs primarily in mitochondria. Thus, mitochondrial structural lesions may have resulted in early liver steatosis and disorders of lipid metabolism.

5. Conclusion

The present findings indicate that trichlorfon induced apoptosis in cultured hepatocytes of C. auratus gibelio via the mitochondrial pathway. This pesticide caused increased cellular ROS and MDA concentrations which may impair mitochondrial bioenergetics and physiological functions. Subsequently, the mitochondrial release of cytochrome c into the cytoplasm activated caspase-3 activation, triggering hepatocytes apoptosis. Moreover, mitochondrial structure lesions might be implicated in lipid metabolism disruption. These results contributed to the understanding of the mechanisms underlying trichlorfon toxicity. Further studies are needed to elucidate the precise biological action and the actual molecular mechanism for trichlorfon-induced disorders of lipid metabolism.

Acknowledgement

The study was supported by The Earmarked Fund for Modern Agro-industry Technology Research System of China (nycytx-49-21).

References

W.-N. Xu et al. / Chemosphere 77 (2009) 895–901